Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn)

Ten xơ ứng suất.

Dưới tác dụng của lực ngoài, vật thể chịu lực bị biến dạng và bên trong nó sẽ

xuất hiện ứng suất. Ứng suất tại mỗi điểm khác nhau là khác nhau, véc tơ ứng suất không

những phụ thuộc vào điểm mà còn phụ thuộc vào hướng của thiết diện qua nó mà được

xác định bởi pháp tuyến có hướng n . Như vậy tập hợp cặp véc tơ ứng suất Tn và véc tơ n

tại điểm P sẽ xác định trạng thái ứng suất tại điểm đó. Trạng thái ứng suất tại điểm

hoàn toàn được xác định qua ten-xơ ứng suất – là một ten xơ đối xứng hạng hai, nên nó

có 6 thành phần độc lập

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 1

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 1

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 2

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 2

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 3

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 3

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 4

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 4

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 5

Giáo trình Phương pháp số (Phương pháp phần tử hữu hạn) trang 5

Tải về để xem đầy đủ hơn

pdf91 trang | Chia sẻ: cucnt | Lượt xem: 450 | Lượt tải: 0download

File đính kèm:

  • pdfgiao_trinh_phuong_phap_so_phuong_phap_phan_tu_huu_han.pdf