Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF
Bài báo giới thiệu phương pháp điều khiển đối tượng phi tuyến với động học bất định và chịu ảnh
hưởng của nhiễu bên ngoài tác động như: con lắc ngược, cánh tay Robot, cơ cấu nâng hạ dựa
theo phương pháp điều khiển Backstepping kết hợp thuật toán đánh giá thành phần bất định sử
dụng mạng neural RBF, đảm bảo cho hệ thống ổn định, giữ cân bằng hay bám chính xác quỹ đạo
cho trước Nội dung bài báo với cách xây dựng thuật toán và cấu trúc điều khiển thông qua
chứng minh tính ổn định theo tiêu chuẩn Lyapunov, kết hợp với các kết quả mô phỏng minh họa
cho đối tượng là con lắc ngược trên phần mềm Matlab Simulink đã cho thấy được tính ưu việt của
phương pháp đề xuất.
Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF trang 1
Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF trang 2
Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF trang 3
Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF trang 4
Một phương pháp điều khiển cho hệ phi tuyến dựa trên cơ sở đánh giá thành phần bất định bằng mạng neural RBF trang 5
Tải về để xem đầy đủ hơn
File đính kèm:
- mot_phuong_phap_dieu_khien_cho_he_phi_tuyen_dua_tren_co_so_d.pdf