Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ

Trong bài báo này, chúng tôi đề xuất một mô hình máy học véc-tơ hỗ trợ cục bộ mới dựa trên máy học véc-tơ hỗ trợ (SVM) và giải thuật gom cụm dữ liệu (clustering), gọi là kSVM, dùng để phân lớp phi tuyến dữ liệu lớn. kSVM sử dụng giải

thuật k-means để phân hoạch dữ liệu thành k cụm (cluster). Sau đó, với mỗi cụm kSVM huấn luyện một mô hình SVM phi tuyến dùng

để phân lớp dữ liệu của cụm. Việc huấn luyện các mô hình SVM trên từng cụm hoàn toàn độc lập với nhau, vì thế có thể được thực

hiện song song trên các máy tính multi-core. Giải thuật song song để huấn luyện kSVM nhanh hơn rất nhiều so với các giải thuật

SVM chuẩn như LibSVM, SVMLight trong bài toán phân lớp phi tuyến dữ liệu lớn.

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 1

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 1

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 2

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 2

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 3

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 3

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 4

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 4

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 5

Phân lớp phi tuyến dữ liệu lớn với giải thuật song song cho mô hình máy học véctơ hỗ trợ cục bộ trang 5

Tải về để xem đầy đủ hơn

pdf8 trang | Chia sẻ: cucnt | Lượt xem: 485 | Lượt tải: 0download

File đính kèm:

  • pdfphan_lop_phi_tuyen_du_lieu_lon_voi_giai_thuat_song_song_cho.pdf
Tài liệu liên quan